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Solvable Lie algebras with Heisenberg ideals 
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Parc Valrosc, 06108 Nice Cedex Z France 
t Centre de recherches mathbmatiques, Universite de MontrM, CP 61284,  Monlrhl, 
QuCbec, Canada H3C 3J7 

Rweived 14 August 1992 

AbslraeL All finite-dimensional indecomposable solvable Lie algebras L(n,  f), having 
the Heisenberg algebra H(n) as the nilradical, are constructed. The number of non- 
nilpotent elemenu f that can be added to H(n) satisfies f < n + 1. The Casimir and 
generalized Casimir operators of the algebras L(n, f) are obtained. 

1. Introduction 

The purpose of this article is to construct all indecompmable solvable Lie algebras 
L that have the (Zn + 1)-dimensional Heisenberg algebra H ( n )  as their maximal 
nilpotent ideals. We also construct the Casimir invariants of L (polynomials in the 
enveloping algebra, commuting with all elements of L), and generalized Casimir 
operators (rational functions of the basis elements of L, commuting with all elemenm 
of L). 

The Heisenberg algebras H ( n )  with basis 

is of primordial importance in quantum mechanics. The operators Pi in this case 
correspond to linear momenta, Bi to coordinates and the central element H is 
proportional to the Planck constant. The extension of the algebra H ( n )  by further 
operators S,, ..., S, is then a question of the algebra of quantum mechanical 
observables. We shall denote these extensions L ( n ,  f) .  

The Heisenberg algebra H(n)  is also a subalgebra of the quantum mechanical 
Galilei algebra [1,2] (or extended Galiei algebra). The operators Pi in this 
interpretation generate space translations, B, generate Galilei boos6 and H changes 
the phase of the wavefunction. The algebra H (  n )  is also a subalgebra of the symmetry 
algebra of the heat equation, [3], and of the nonlinear Schredinger equation with any 
nonlinearity F(l$l), depending only on the absolute value'of the wavefunction $ 
and of many other partial differential equations occurring in non-relativistic physical 
theories [4,5]. In this context, extensions of the Heisenberg algebra H ( n )  are part 
of a study of physical theories with symmetries going beyond translations and Galilei 
b0QSts. 

0305.4470,93~51123+16$07.50 @ 1993 IOP Publishing Ltd 1123 
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An algebra that plays an important role in the microscopic theory of collective 
motions in nuclei is a semidirect product of the symplectic Lie algebra with the 
Heisenberg algebra as an ideal [47l 

WSp(2,%) = Sp(2n,%) D H(n). 

It turns out that all solvable indecomposable Lie algebras L( n, f) obtained as 
extensions of the Heisenberg algebra H(n) are subalgebras of sp(2n,%) D H(n) 
(or sp(2n,C) D H ( n ) ) .  They should hence have a role to play in the theory of 
nuclear collective motions. 

From the mathematical point of view this investigation is part of a classification of 
all finite-dimensional Lie algebras. The Levi theorem [%lo] tells us that every finite- 
dimensional Lie algebra L is a semidirect sum of a semisimple Lie algebra and a 
solvable ideal (the radical R( L)). Semisimple Lie algebras over fields of characteristic 
zero have been classified by Cartan [ll]. The classilkation of solvable Lie algebras 
is, however, complete only for low dimensions (dim L < 6). [12-141. Malcev [15] 
has obtained important results on the structure of solvable Lie algebras, but has not 
classified all solvable Lie algebras with a given maximal nilpotent ideal (e.g. H ( n ) ) .  A 
considerable literature exists on representations of solvable Lie algebras and groups; 
for a review see [16]. 

In section 2 we provide a classification of all indecomposable solvable Lie algebras 
L(n,f) containing H ( n )  as their maximal nilpotent ideal. In particular we show 
that f is restricted to f 6 n + 1 and that we have L ( n , f )  c sp(2n, F) D H(n) .  

All Casimir and generalized Casimir operators of L(n, f) are obtained in section 
3. The Casimir operators, when they exist, include the central element H E L ( n ,  f) 
and second-order polynomials in the enveloping algebra of L(n ,  f). In other cases, 
only generalized Casimir operators exist: they are second-order operators, multiplied 
by H-'. 

2. Classification of solvable Lie algebras with nilradical H ( n )  

21. Preliminaries 

Let us first recall some well known results on solvable Lie algebras, that we shall need 
below [9,10,12]. We consider Lie algebras over a field F, with F = %, or F = C 
(real or complex numbers). 

A solvable Lie algebra L is characterized by the fact that its derived series: 
Lu E L, L1 = [ L ,  L ] ,  . . . , Lit1 = [ L j ,  L j ]  terminates (Lk = 0 for some k E 

A solvable Lie algebra is nilpotent if its lower central series L(') = L, L(') = 
[ L , L ( ~ ) ] .  . . , ~ ( j + * )  = [ L ,  L G ) ]  terminates. 

The nilradical N R ( L )  of a solvable Lie algebra L is the maximal nilpotent ideal 
of L. For a given solvable Lie algebra L its nilradical N R ( L )  is unique and its 
dimension satisfies 

dim N R ( L )  > dim L .  

A Lie algebra L is decomposable if it can, by change of basis, be transformed 
into a direct sum of two (or more) Lie algebras 

L = L,  @ L, [L , ,  L2] = 0. (2.2) 
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It is indecomposable otherwise. 

combination of them is nilpotent, i.e. 
A set of matrices { X i }  is linearly nilindependent if no non-zero linear 

N 
x = cixi X" = o implies ci = o vi. (2.3) 

i=l 

An element n of a Lie algebra L is nilpotent in L, if it satisfies 

[n.. . [n[n,r]]] = 0 vx E L .  (2.4) 

A set of elements of L is linearly nilindependent if no non-zero linear combination 
of them is a nilpotent element in L. 

22. Bask classificafion fheorem 
Let us consider the 2n t 1-dimensional Heisenberg algebra H ( n )  in its standard 
basis {PI, . . . , P, , B,, . . . B,, H }  with commutation relations 

[Pi,B,]=sj,H [Pi ,H]  = [ B j , H ] = O .  ( 7 5 )  

We wish to extend this algebra to an indecomposable solvable Lie algebra L( n, f) 
of dimension 2n + 1 + f having H ( n )  as its nilradical. This means we wish to add f 
further linearly nilindependent elements to H ( n ) .  Let us denote them {SI, . . . , S,}. 

The derived algebra of a solvable Lie algebra is contained in its nilradical 191. 
The commutation relations of L(n,f) involving the new elements Sa, will have the 
form 

a ,  E F, owl, U,Z, P,I p p 2 , ~ F " X 1  a = l ,  ..., f 
A,,C,,D,,E, E F n X m  

PT = (P,, . . . P,) BT = (Bl,. . . B"). 
The superscript T denotes complex conjugation and the constants a, were split off 
from A, and E, for future convenience. Further, we have 

7-,g,~bp,& E F. (27) 

We first change basis to put 9, = S, + p,,,+Bi - pa2,;Pi. This amounts to 
setting p,, = pa2 = 0 in (2.6). 

Let us now impose the Jacobi identities. From the triplets IS,, P i , H }  and 
{Su, Bi, H )  we obtain owl = U,* = 0 in (2.6). From the triplets {Sa, 4, Pk}, 
{Sa, Bi, Bk}, {S,, Bi, Pk} we find that the remaining matrices in (2.6) satisfy 

IS,, S,I = 7a.B H +  &Pi t &Bi 

(28)  E, = -A, C,=C; D , = D , .  T 
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It foUows that the matrices 

J L Rubin and P Winfemitz 

belong to the symplectic Lie algebra sp(2n, F) 

X,IC-+KX,T=O O I  o).  (2.9b) 

Thking suitable linear combinations of the elements S, we can arrange to have 
al = 1, or 0, and az = . . . = a - 0. 

The Jacobi identities for the triplets {S,, S,, pi }  and { S,, S,, B,} imply 
pi, = -& = 0. Further they imply that the matrices X, must commute. For at = 0 
they must also be linearly nilindependent, otherwise the nilradical would be larger 
than H (  n). For a1 = 0 the matrices { X 2 , .  . . XI} must be linearly nilindependent 
for the same reason, though S, may be nilpotent or even vanish. This imposes a 
restriction on the number of elements S, that can be added. Indeed, the number of 
linearly nilindependent matrices X ,  E sp(2n, F) is less or equal to the rank R of 
sp(2n, F) [IT]. 

The remaining Jacobi identities for {S,, S,, S,} (for f 2 3) imply that for al = 1 
we have rep = 0, Q # 1.0 # 1. Redefining S, in this case as 9, = S, - rlo H we 
obtain T,, = 0 as well. 

The obtained "muta t ion  relations can be further simplified by transformations 
that respect the commutation relations in the nilradical H(n) and the simplifications 
already achieved. We put 

I -  

The commutation relations (2.5) are written as 

[ E , , E b l  = K,,H 1 4 a, b < 2n 

The transformation (2.10) must then satisfy 

GKGT = K 

with K as in (2.9), i.e. G E Sp(2n, F) belongs to ~ ~ - f  symplectic Lie group. 
A further allowed transformation is the scaling 

P: = XP, B: = AB, H ' = A 2 H  A E F  x # O .  

We have thus proven the following result. 

(2.10) 

(2.11) 
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Theorem I .  Every indecomposable solvable Lie algebra L ( n , f )  (over the field 
F = W or F = C, containing the Heisenberg algebra H ( n )  as its nilradical, 
can be written in a canonical basis {S,,. . . , S J ,  P,,. .., P,, E , ,  . . . , B,, H }  with 
commutation relations (2.5), supplemented by 

[S, 7 Sol = rep H a , p = l ,  ..., f. (2.15) 

The vector column E is defined as 

ET = {PI , .  . . PN, B,, . . . , BN}.  

The constants a,  satisfy 

a2 = .. . = aJ = 0.  (2.16) 

The matrices X,, . . .XI satisfy (2.9) and 

IX,,X,l= 0. (217) 

For a,  = 0, or a,  = 1 the sets { X I ,  . . . Xf), or { X 2 , .  . . X r )  are linearly 

The constants rap satisfy 
nilindependent, respectively. 

rap = -rp, = 0 

rap = -rpm E F 
for a ,  = 1 

for a ,  = 0 .  

The dimension of the Lie algebra L ( n , f )  is 

(2.18) 

d i m L ( n , f ) = Z n + l + f  0 4  f < n + l .  (2.19) 

The maximal value f = n + 1 is achieved precisely if we have al  = 1, XI = 0 
and { X , ,  . . . ,X,)  is a Cartan subalgebra of Sp(2n, F). We then also have roo = 0 
for all a, p. 

' b o  algebras L ( n , f )  and L ' ( n , f ) ,  characterized by ( a I , X , , v a o )  and 
( a i ,  X ; ,  T-''~) are equivalent if, after an allowed transformation we have 

x ,  = x:, al = ai reo = r&@. (220) 

Allowed transformations are the symplectic transformations (2.12), the scaling 

A classification of the solvable algebras S(f) thus boils down to a classification 

Elements of sp(2n,W) and sp(2n,C) have been classified [18,19], as have 

(2.13) and linear combinations of S,, respecting the form of (2.14). 

of Abelian subalgebras of sp(2n, F), containing no nilpotent elements. 

maximal Abelian subalgebras 117. 
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2.3. The lowest dimensional case: n = 1 

The Heisenberg algebra H (  1) is three dimensional with basis { P, B, If}. Following 
theorem 1, we can extend H ( 1 )  either by one element S, or by two commuting 
elements {S,, S2). Let us consider these two cases separately. 

(i) dim L = 4. (f = 1.) The algebra sp(2, C) has two types of elements, nilpotent 
and non-nilpotent. The algebra sp(2, R) has three types: nilpotent, compact and non- 
compact. The algebra L is completely characterized by one matrix M ,  figuring in the 
commutation telation (2.14). 

J L Rubin and P Wrztemitz 

For F = five inequivalent possibilities occur, characterized by the matrices 4 
l i b  0 ) 

1 - b  

(221a) 

a > O  M ( 5 1 = ( O  0 l ) .  (2.216) 
-1 0 

For F = C precisely three possibilities occur, namely those of (2.21~). Indeed, 

(ii) dim L = 5. (f = 2.) In this case we must have 
over c, W 4 )  is equivalent to MI), M 5 )  to M3). 

[S,, S,l = 0 

and the action of SI and S, on H(2) is characterized by a matrix pair {MI, M2}.  
Over ?R two possibilities occur 

and 

over F = C the two cases are equivalent and only one survives, the natural choice 
being (2.22~1). 

2.4. The case: n = 2 
The Heisenberg algebra H(2) is five-dimensional; we have 0 < k < 3, i.e. we can 
add one, two or three elements Se. 

(iii) dim L = 6. Algebras L(2,l). For F = C, 8 types of such algebras exist, one 
of them depending on 2 complex parameters, 3 depending on one complex parameter, 
4 without parameters. 

For F = ?R altogether 19 types exist, among them 4 depend on 2 real parameters, 
8 on one real parameter, 7 without parameters. 

They are listed in table A1 of the appendix. 
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(iv) dim L = 7. Algebras L(2,2). For F = C, 8 types of such algebras exist, one 

For F = $3, 27 such types exist, 4 depending on two parameters, 9 on one and 

(v) dim L = 8. Algebras L(2,3). The commutation relations for SI, S, and S, 

depending on 2 complex parameters, 2 on one parameter, 5 without parameters. 

14 without parameters. They are presented in table A2 of the appendix 

are 

[S,,SpI=O a , P =  1,2,3. (2.23) 

The action of S, on { H ,  PI, Pz, E,,  E2} is given by three matrices Me as in 
(2.14). For F = C the Cartan subalgebra of sp(4,C) is unique and we have 

2 0 

M i 1 ) =  [ 1 
M,(’ )=  [ 0 -1 o) 

M:”= [ 1 -1) (2.24) 

0 

For sp(4,IR) we have four inequivalent Cartan subalgebras [17], so in addition 
to the algebra L characterized by the matrices (2.24) we have three more cases, 
characterized by 

/ 2  \ / O  \ 

/O \ 

(2.26) 
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M y ) = ( 2  1 1  M y ) = ( o  0 0 0 1 0  0 0 0] 
- 1 0 0 0  
0 0 0 0  

/O \ 

(2.27) 

3. Invariants of the solvable Lie algebras 

3.1. Comments on Casimir invurianfs 

In theorem 1 we have characterized the indecomposable solvable Lie algebras L(nf) 
with the Heisenberg algebras H (  n) as nilradicals. The corresponding Lie group 
G ( n , f )  acts on L ( n , f )  via its adjoint representation. The group G(n,f) acts on 
the dual L' of L(n , f )  via its coadjoint representation and sweeps out orbits in L*. 
These orbits are characterized by certain invariants I,. If they are polynomials, they 
give rise to Casimir operators: elements of the centre of the enveloping algebra 
of L(n,f). More generally the invariants in the coadjoint representation may 
correspond to functions of the infinitesimal operators of L(n,f). In particular these 
may be rational functions, or even algebraic, or transcendental functions [13,20]. We 
shall call the corresponding operators 'Generalized Casimiir Invanants'. 

In any case the invariants of the coadjoint representation characterize irreducible 
representations of the considered Lie algebra [16,21] and are hence of considerable 
importance in physical applications. 

We shall now calculate a basis of the invariants of the group G(n, j), using Lie 
algebraic methods [13,20]. 

We shall realize the coadjoint representation of L (n , f )  in a space 
of differentiable functions of 2n + 1 + f variables which we denote 
Is1,. . . , s , , p , , .  . . p , .  b,,  . . . , b,, h}. The algebra L(n,f) of theorem 1 will be 
realized by differential operators, the form of which can be read off from the com- 
mutation relations (2.5), (2.14) and (2.15). Namely, we have 

H = -2a 1 ha 1, 

pi = ha,, - ( f % P ,  + cgba)asa -a iP;a , ,  

Bi = -ha,, - (DYap ,  - A;iba)i3se - alb ias ,  

(3 .1~)  

(3.lb) 

s, = 2a,hah + (AP,p,, + C g b ,  + amp&, + (DYap,  -A;$, + a,bi)ab, 

+ ragha,# (3.1~) 

a , = O  a > 2  1 i =  1, ..., n 

rap=" for a1 = 1. 

a = ~ ,  ...,j 
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The matrices A,  C = CT and D = DT are the same as in the commutation 

The invariants of G(n, f) will be obtained as functionally independent solutions 
relations (2.14), i.e. in (2.8). 

of the system of first-order linear partial differential equations 

H F = O  P , F = O  B i F = O  S,F=O F =  F ( s , , p i , b i , h ) .  

(3.ld) 

3.2 The Casimir invariants of ihe L ( n ,  f) aIgebrm 

Let us treat the cases al = 1 and al = 0 separately. 

Theorem 2. The indecomposable solvable Lie algebra L ( n ,  f) with commutation 
relations (2.S), (214), (2.15) and a, = 1 (and hence rap = 0) has precisely (f - 1) 
generalized Casimir invariants. They can be written in the form 

Ia - l=  [2HS,+AP;(BiPj+PjBi)+C,p;.B;Bj - DP;P,q]H-'  

Q = 2 , .  . . , f. ( 3 4  

Proof. Applying H for al = 1 to the function F ( s , , p , , b , , h )  we find that F is 
independent of sl. Applying the basis operators of H ( n ) ,  namely Pi and Bi of (3.1) 
successively to F and using the method of characteristics, we find that F can depend 
only on 2, = h and Z,,  2 < Q < f with 

2, = 2hs, +2AGbipj t C$b;bj - DF.p.p ' I  : 3 '  (3.3) 

Let us now apply the remaining operators Sp to F ( h ,  Z,, . . . Zr). We have 

SpZ, = ( A P A 5  - ApA" t C D D p  - CpDDu);kbipk + ( D p A P  - DaAp);kPiPk 

+ ( A P C P - A p C e ) i k b ; b k  2 < a , p <  f. (3.4) 

The commutativity conditions (2.17) imply that the first term in (3.4) vanishes. 
The second and third term also vanish, since the symmetric parts of the matrices 
DPA" - DOAP and A*CP - A@CU are zero as a result of the same commutativity 
relations. The antisymmetric parts, when contracted with the symmetric tensor p i p k  
(or bibk,  respectively), also vanish. Hence we have SpZ, = 0 for p 3 2, Q 2 2 
Finally, we apply S, and obtain 

S,F(h,  2,) = 2( hF, + ZzFz, + . . . t 2, F z b )  = 0. (3.5) 

From (3.5) we conclude that F is an arbitrary function of the invariants (3.2) and 
this proves theorem 2. 
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Theorem 3. The indecomposable solvable Lie algebra L(n ,  f )  with commutation 
relations (ZS), (214), (215) and a, = 0 has N Casimir invariants 

where 

n 
- D$PiPj  1 4 a 4 f. 

i , j = l  

(3.7) 

(3.8) 

The constants apa are determined from the condition that the column vectors ap 
span the nullspace of the matrix R 

Ra,=O 2 4 p 4 N .  (3.9) 

Proof. From the form of the operators (3.1) with a,  = 0 we see directly that h is 
an invariant. The equations Pi B = B; F = 0 imply F = F ( h ,  Z,, . . . 2,) with 2, 
as in (3.3), and 1 < a 4 f .  Following the same reasoning as in the proof of theorem 
2 we obtain 

= 0. 
aF 

S, F = 2h2r - azp (3.10) 

It follows that the elementary solutions of (3.10) are linear combinations of Zp with 
constant coefficients, as in (3.6). We then have 

S =!J I = h2ragapp = 0 

Le. we obtain (3.9) and this completes the proof of theorem 3. 

3.3. Examples 

TJ illustrate theorem 2, let us consider the eight-dimensional Lie algebra L(2,3), 
characterized by the matrices of (224) .  Applying the theorem, or calculating the 
invariants directly, we obtain 

(3.11) 
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To illustrate theorem 3, let us consider the case of the algebras L(n,3) with n 
arbitrary. The matrix 8 in this case is 

(3.12) 

and its rank is either r = 0 or r = 2. 
For r = 0 we have rI2 = ru = r3, = 0 and we obtain 4 invariants 

Ih ,  z,, zz, z31 (3.13~) 

with Zi as in (3.8). 
In all other cases we have P = 2 and the two invariants are 

I, = H 12 = TUZI + T3Iz2  + qJ3. (3.13b) 

As a further illustration of theorem 3, consider the Lie algebras L ( n , 4 ) .  The 
matrix R E F4x4 can have rank 0,2 or 4. The invariants are respectively 

r = o  tH,ZI,Z2,Z3,Z4l (3.14~) 

T = 2 (3.14b) 

r = 4  {H}. (3.14~) 

{H,r,Zl + ~31Z2 + ~12Z3, r24z1 + T ~ ~ Z ~  + ‘lZz4) 

4. Conclusions 

Theorem 1 reduces the problem of finding all indecomposable solvable Lie algebras 
L(n,f) with H(n) as their nilradical, to the problem of classifying all Abelian 
subalgebras of sp(2n, F), containing no nilpotent elements. The classification 
group is Sp(2N,F) ,  figuring in physical applications as the group of canonical 
transformations leaving the Heisenberg relation invariant [22-251. 

Theorems 2 and 3 provide all the invariants of the coadjoint action of the 
corresponding groups G(n,f), or in more physical terms, the Casimir operators 
and the generalizq Casimir operators. 

The results of this article should be of use e.g. in constructing the unitary 
representations of the solvable Lie algebras L ( n , f )  and Lie groups G(n,f), in 
particular in the calculation of the characters of these representations. 
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Tpble Al .  The Lie algebras L(2,l). 

Name X a = l  o = o  

/ o  0 1 0) 

N.A. 

/ o  1 0 o \  
N.A. 

b = l  

N.A. 
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Appendix. Extensions of H(2)  by one and two elements 

As an illustration of theorem 1, we shall give a list of all algebras L(2 , l )  and L(2 ,2 ) .  
The algebras L ( 2 , 3 )  were presented in section 2. 

Let us first consider the case L(2, l ) .  We characterize the algebra by the constant 
a = 1 or 0 and by the matrix X E sp(4,F) figuring in theorem 1. For each algebra 
we introduce a name F,(a,b,c)  or Ri(a ,b ,c ) .  The letter F indicates that the 
algebra exists both for F = C and F = R; the algebras R exist over R only (Le. 
over C they are equivalent to the algebras F). The subscript simply enumerates the 
algebras. The label a in the brackets takes values a = 1 or a = 0. The other labels 
indicate parameters in the matrix X. If there are less than two parameters we drop 
corresponding labels. In table Al, we give a list of all inequivalent algebras L ( 2 , l )  
over R and C .  In the last two columns we give the range of parameters b, c separately 
for a = 1 and a = 0 and for F = C and R. The letters N.A. in column 4 indicate 
that the algebra does not exist for a = 0. 

The statement is: any Lie algebra L(2,l)  is equivalent to precisely one listed in 
table Al. 

We now turn to the algebras L(2 ,2 )  characterized by two constants, al and 
T = T , ~ ,  and two commuting matrices XI, X, E sp(4, F). 

Any such algebra is equivalent to precisely one in table A2. The first 8 algebras 
correspond to al = a, = 0 and T = 0 or 1, as indicated in columns 1 and 2. The 
remaining ones correspond to al  = 1, a,  = 0, T = 0. 

The notation F,(b,c) indicates that the algebras exist and are mutually 
inequivalent over both F = C and F = R; the notation R, (b , c )  indicates algebras 
that differ from those denoted F, only over the field of real numbers R. The range 
of parameters over C and R is given in the last column of table A2. 

1135 

Table AZ. The Lie algebras L ( 2 , 2 )  

a1 T Name XI XZ Range of parameters 

0 1 Fl 
0 Fz 

1 0  0 0 0 0 0  0 

0 0  0 0 0 0 0 - 1  
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Table AZ (continued) 

/n n n n \  n n n \  

\ O  o o - b /  \ O  o o -cJ  

1 0 F, 

0 1  0 0 1 0  0 

(: : : :) (n 
0 0 - 1 0  

1 0 Fs 

0 0 0 1  0 0  

(! ; H ;) (; ;1 H) 
1 0  0 0 (; ; ; i) (: 0 0  : -4 0 :) 0 

- b O O O  1 0  0 0 

1 0 FT(b) ( i. i) (: i i) ': w: 06arg(b )  O g b  
0 0  0 0 

(:' : :) ( i '  : :) C : O g a r g ( b ) < m  R: O < b  
0 0 - b  0 0 0 - 1  0 
0 0  0 -b 0 0 -1 -1 

1 0 

0 0 0 0  

1 0 R d b )  ( 0  0 0 0 0 0 0  b )  (B  0 0 - 1 0  H H) b # O  
0 - b o 0  

O b O O  

1 0 R s ( b )  (ib :) (i 8 !l I) O < b  
0 0 - b O  0 0  0 -1 
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a, .p Name XI Range of parameters 

/ O  0 0 b\ /1 0 0 O\ 
0 0 b O  0 - 1  0 0 

R16(b) I 0 - b  0 0 I I O  0 -1 0 I 
\-b o o OJ 10 o o I J  

O <  b 0 0 - b O  0 0 - c o  
0 0  0 0 0 - 1  0 0 

1 0 Ria(b,c) 

0 0 1 0  0 0 0 0  

Rn (; ! !) (: : : ;) 
0 - 1 0 0  

(0 0 0 0 0 0  0 b )  ( B  !c f %) - 1 < c < 1  
0 0 0 0  -1  0 0 0  c f 0 ,  b E 9 L  
0 - b o 0  

1 0 R 2 i ( b r c )  

/ b  0 0 O \  / c  1 0 O \  

\O 0 0 - b J  \ O  o -I - c J  
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Table AZ. (continued) 

a, r Name X1 X ,  Range of parametem 

0 1 0 0  

1 0 Rz.i(b) - b  0 0 0  
0 0 - 1 0  

0 0 1 0  0 1 0 0  

1 0 Rx 

0 0 - 1 0  

O b 0 0  0 1 1 0  

1 0 R d b )  (ib : : i )  (;' : : :) 6 E W  
0 0 - b O  0 0 - 1 0  
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