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Abstract, All finite-dimensional indecomposable solvable Lie algebras L(n, f), having
the Heisenberg algebra H(n) as the nilradical, are constructed. The number of non-
nilpotent elements f that can be added to H(n) satisfies f € n + 1. The Casimir and
generalized Casimir operators of the algebras L(n, f) are obtained.

1. Introduction

The purpose of this article is to construct all indecomposable solvable Lie algebras
L that have the (2n + 1)-dimensional Heisenberg algebra H(n) as their maximal
nilpotent ideals. We also construct the Casimir invariants of L (polynomials in the
enveloping algebra, commuting with all elements of L), and generalized Casimir
operators (rational functions of the basis elements of L, commuting with all elements
of L).

The Heisenberg algebras H(n) with basis

{P,,...P,,By,...,B,, H} (1.1)

is of primordial importance in quantum mechanics. The operators F; in this case
correspond to linear momenta, B; to coordinates and the central element H is
proportional to the Planck constant. The extension of the algebra H(n) by further
operators Sy,...,S, is then a question of the algebra of quantum mechanical
observables. We shall denote these extensions L(n, f).

The Heisenberg algebra H(n) is also a subalgebra of the quantum mechanical
Galilei algebra [1,2] (or extended Galilei algebra). The operators P; in this
interpretation generate space translations, B; generate Galilei boosts and H changes
the phase of the wavefunction. The algebra H(») is also a subalgebra of the symmetry
algebra of the heat equation, [3], and of the nonlinear Schrodinger equation with any
nonlinearity F(|+|), depending only on the absolute value of the wavefunction
and of many other partial differential equations occurring in non-relativistic physical
theories [4,5]. In this context, extensions of the Heisenberg algebra H(n)} are part
of a study of physical theories with symmetries going beyond translations and Galilei
boosts.
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An algebra that plays an important role in the microscopic theory of collective
motions in nuclei is a semidirect product of the symplectic Lie algebra with the
Heisenberg algebra as an ideal [6,7]

wsp(2, R) = sp(2n,R) > H(n).

It turns out that all solvable indecomposable Lie algebras L(n, f) obtained as
extensions of the Heisenberg algebra H({n) are subalgebras of sp(2n,R) > H(n)
(or sp(2n,C) > H(n)). They should hence have a role to play in the theory of
nuclear collective motions.

From the mathematical point of view this investigation is part of a classification of
all finite-dimensional Lie algebras. The Levi theorem [8-10] tells us that every finite-
dimensional Lie algebra L is a semidirect sum of a semisimple Lie algebra and a
solvable ideal (the radical R(L)). Semisimple Lie algebras over fields of characteristic
zero have been classified by Cartan [11]. The classification of solvable Lie algebras
is, however, complete only for low dimensions (dim L < 6). [12-14]. Malcev [15]
has obtained important results on the structure of solvable Lie algebras, but has not
classified all solvable Lie algebras with a given maximal nilpotent ideal (e.g. H(n})). A
considerable literature exists on representations of solvable Lie algebras and groups;
for a review see [16].

In section 2 we provide a classification of all indecomposable solvable Lie algebras
L(n, f) containing H(n) as their maximal nilpotent ideal. In particular we show
that f is restricted to f < n 4+ 1 and that we have L(n, f) C sp(2n, F) b H(n).

All Casimir and generalized Casimir operators of L(r, f) are obtained in section
3. The Casimir operators, when they exist, include the central element H € L(n, f)
and second-order polynomials in the enveloping aigebra of L{n, f). In other cases,
only gelneralized Casimir operators exist: they are second-order operators, muitiplied
by H-".

2. Classification of solvable Lie algebras with nilradical H(n)

2.1. Preliminaries

Let us first recall some well known results on solvable Lie algebras, that we shall need
below [9,10,12]. We consider Lie algebras over a field F, with F =R, or F = (
(real or complex numbers).

A solvable Lie algebra L is characterized by the fact that its derived series:
’=L, L'=[L,L},...,L#* = [L/, L] terminates (L* = 0 for some k € Z2%).

A solvable Lie algebra is nilpotent if its Jower central series LY = L, L() =
[(L,L®..., LU+D = [L, LU)] terminates.

The nilradicai N R( L) of a solvable Lie algebra L is the maximal nilpotent ideal
of L. For a given solvable Lie algebra L its nilradical N R(L) is unique and its
dimension satisfies

dim NR(L)> 1 dim L. (2.1)

A Lie algebra L is decomposable if it can, by change of basis, be transformed
into a direct sum of two (or more) Lie algebras

L=LoL, [L,L]=0. 22)
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It is indecomposable otherwise.
A set of matrices {X;} is linearly nilindependent if no nom-zero linear
combination of them is nilpotent, ie.

N
X=>¢X, X™ = 0 implies ¢; = 0 Vi. (2.3)
i=1

An element n of a Lie algebra L is nilpotent in L, if it satisfies
[n...[n[r,z]]]=0 Yee L. 24

A set of elements of L is linearly nilindependent if no non-zero linear combination
of them is a nilpotent element in L.
2.2. Basic classification theorem
Let us consider the 2n + 1-dimensional Heisenberg algebra H(n) in its standard
basis {P},..., P, By,... B,, H} with commutation relations
[P, Byl =8 H [P, H]=[B;, H]=0. 25)

We wish to extend this algebra to an indecomposable solvable Lie algebra L(n, f)
of dimension 2n + 14 f having H(n) as its nilradical. This means we wish to add f
further lineatly nilindependent elements to H(n). Let us denote them {S;,...,8;}.
The derived algebra of a solvable Lie aigebra is contained in its nilradical [9].
The commutation relations of L{n, f) involving the new elements S, will have the

form
[So:! H] 20,“ 0'211 O’I'z H
[SO” P] = Pa,1 aaIn + Aa CQ P (2.6)
[507'3] Pa,z Dn a’aIn + Ear B
Gy € F,0,1,0421 P01 PyasE Frxl a=1,...,f
Aa’car’Do:!Ea € ann
PT=(Pp,...P,) BT = (By,...B,).

The superscript T denotes complex conjugation and the constants a, were split off
from A, and E, for future convenience. Further, we have

[SasSpl = ropH +YepPi+ thgB:  Toprapstap € F.  (27)

We first change basis to put 5, = S, + p,1;B; — Py, F:. This amounts to
setting p,q = P,y = 01in (2.6).

Let us now impose the Jacobi identities. From the triplets {S,,P;, A} and
{S,,B;, H} we obtain o,y = 0,, = 0in (2.6). From the triplets {S,, P;, P},
{S,,B;, B}, {S,, B;, P} we find that the remaining matrices in (2.6) satisfy

E, =-AT ,=Cl D =DT (2.8)
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It follows that the matrices

A, C
(% %)

belong to the symplectic Lie algebra sp(2n, F)

X, K+ KXT =0 K:(_OI g) (2.95)

Taking suitable linear combinations of the elements S, we can arrange to have
a;=1,or0,and gy =...=a, =0.

The Jacobi identities for the triplets {S,,S5,F;} and {S,,S4,B;} imply
ths = Vag = 0. Further they imply that the matrices X, must commute. For a; =0
they must also be linearly nilindependent, otherwise the nilradical would be larger
than H(n). For a; = 0 the matrices {X,,... X;} must be linearly nilindependent
for the same reason, though X, may be nilpotent or even vanish. This imposes a
restriction on the number of elements S, that can be added. Indeed, the number of
linearly nilindependent matrices X, € sp(2n, F') is less or equal to the rank n of
sp(2n, F) [17].

The remaining Jacobi identities for {8y, 8, Sz} (for f > 3) imply that for a, =1
we have 7,5 = 0, & # 1, 8 # 1. Redefining S, in this case as 5, = S, —ry, H we
obtain r, = 0 as well.

The obtained commutation relations can be further simplified by transformations
that respect the commutation relations in the nilradical H(n) and the simplifications
already achieved, We put

£= ( g) ¢ = Ge. (2.10)
The commutation relations (2.5) are written as

[6,6] = KyH  1<a,b<2n. (211)
The transformation (2.10) must then satisfy

GKGT=K (2.12)

with K as in (2.9), ie. G € Sp(2n, F) belongs to the symplectic Lie group.
A further allowed transformation is the scaling

P/=)\P, B\ =B,

)

H' = )H AEF X #£0, (2.13)

We have thus proven the following result.
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Theorem 1. Every indecomposable solvable Lie algebra L(n,f) (over the field
F = ® or F = (, containing the Heisenberg algebra H(n) as its nilradical,
can be written in a canonical basis {S;,...,5;, P,..., Py, Byy. .., By, H} with
commutation relations (2.5), supplemented by

([[Sbs:,fé]) = M, (? ) M, = (2‘6“ ., 12u0+ Xa) (2.14)

[S0: S5l =ragH  a,8=1,...,f. (2.15)
The vector column £ is defined as

&' ={P,...Py,B,,...,By}.

The constants a, satisfy
1
a1={0 a=...=a; =0 (2.16)

The matrices X, ... X, satisfy (2.9) and
[Xar X5l =0. (2.17)

For a; = 0, or a; = 1 the sets {X,... X}, or {X,,...X,]} are linearly
nilindependent, respectively.
The constants r, ; satisfy

Tag = —Tga =0 fore; =1

Tag = ~Tgg € F for a; = 0. (2.18)
The dimension of the Lie algebra L(n, f) is
dim L{n, ) =2n+ 14+ f 0K f<n+1. (2.19)

The maximal value f = n + 1 is achieved precisely if we have ¢, = 1, X, =0
and {X,,... , X} is a Cartan subalgebra of Sp(2n, F'}. We then also have r,z =0
for all &, 3.

Two algebras L(n,f) and L'(n,f), characterized by (a;, X,,r,s) and
(a1, X&1 Typ) are equivalent if, after an allowed transformation we have

X, =X, a; = aj Tag = Tag- (2.20)

Allowed transformations are the symplectic transformations (2.12), the scaling
(2.13) and linear combinations of S, respecting the form of (2.14).

A classification of the solvable algebras S(f) thus boils down to a classification
of Abelian subalgebras of sp(2n, ), containing no nilpotent elements.

Elements of sp(2Zn,R) and sp(2n,C) have been classified [18,19], as have
maximal Abelian subalgebras [17].
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2.3. The lowest dimensional case: n = 1

The Heisenberg algebra H(1) is three dimensional with basis { P, B, H }. Following
theorem 1, we c¢an extend H(1) either by one element S, or by two commuting
elements {S;, S,}. Let us consider these two cases separately.

(i) dim L = 4. (f = 1.) The algebra sp(2, C') has two types of elements, nilpotent
and non-nilpotent. The algebra sp(2, R} has three types: nilpotent, compact and non-
compact. The algebra L is completely characterized by one matrix Af, figuring in the
commutation relation (2.14).

For F = i\ﬁve inequivalent possibilities occur, characterized by the matrices

2 2
MO = 145 0 b>0 M2 = 11
0 1-b 0 1

0
A3 = ( 1 ) (2.21a)
-1

2 0
M® = 1 a a>0 MG = 0 1]. (2.21b)
—a 1 -1 0

For F = C precisely three possibilities occur, namely those of {2.21a). Indeed,
over C, M is equivalent to MM, M©®) 1o M3,
(ii) dim L = 5. (f = 2.) In this case we must have

[ShSZ] =0

and the action of S) and S, on H(2) is characterized by a matrix pair { M, M,}.
Over R two possibilities occur

2 0
MO = 1 M) = 1 (2.22a)
1 -1
2 0
MP = 1 MP = 0 1]). (2.22b)
1 -1 0

over F' = C the two cases are equivalent and only one survives, the natural choice
being (2.22a).

2.4, The case: n =2

The Heisenberg algebra H(2) is five-dimensional; we have 0 € & < 3, i.e. we can
add one, two or three elements S,.

(iii) dim L = 6. Algebras L(2,1). For F' = C, 8 types of such algebras exist, one
of them depending on 2 complex parameters, 3 depending on one complex parameter,
4 without parameters.

For F = R altogether 19 types exist, among them 4 depend on 2 real parameters,
8 on one rea] parameter, 7 without parameters.

They are listed in table Al of the appendix.

and
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(iv) dim L = 7. Algebras L({2,2). For F = C, 8 types of such algebras exist, one
depending on 2 complex parameters, 2 on one parameter, 5 without parameters.
For F = R, 27 such types exist, 4 depending on two parameters, 9 on one and
14 without parameters. They are presented in table A2 of the appendix.

(v) dim L = 8. Algebras L(2,3). The commutation relations for S;, S, and S,
are

[Saﬁsﬁ] =0 o, 8=12,3. (2.23)

The action of S, on {H, P, P,, By, B,} is given by three matrices M as in
(2.14). For F = C the Cartan subalgebra of sp(4,C) is unique and we have

2 0

1 0

MM = 1 (2.24)
-1
For sp(4,R) we have four inequivalent Cartan subalgebras [17], so in addition

to the algebra L characterized by the matrices (2.24) we have three more cases,
characterized by

2 0
MP = 1 MP = 1
1 -1
1 -1
0
0 1
MP = -1 0 (2.25)
0 1
-1 0
2 0
M = 1 MP = 0
1 -1
1 0
0
00 00
M = 00 01 (2.26)
00 00
0 -1 00
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2 0
1 0 010
M® = 1 M9 = 0 000
1 -1 000
1 0 000
0
0 0 00
MY = 0 0 01 (227
0 0 00
0 -1 00

3. Invariants of the solvable Lie algebras

3.1. Commaents on Casimir invariants

In theorem 1 we have characterized the indecomposable solvable Lie aigebras L(n f)
with the Heisenberg algebras H(n) as nilradicals. The corresponding Lie group
G(n, f) acts on L(n, f) via its adjoint representation. The group G(n, f) acts on
the dual L* of L(n, f) via its coadjoint representation and sweeps out orbits in L*.
These orbits are characterized by certain invariants I,. If they are polynomials, they
give rise to Casimir operators: elements of the centre of the enveloping algebra
of L(n, f). Mote generaily the invariants in the coadjoint reprcsentation may
correspond to functions of the infinitesimal operators of L(n, f). In particular these
may be rational functions, or even algebraic, or transcendental functions {13,20]. We
shall call the corresponding operators ‘Generalized Casimir Invariants’,

In any case the invariants of the coadjoint representation characterize irreducible
representations of the considered Lie algebra [16,21] and are hence of considcrable
importance in physical applications.

We shall now calculate a basis of the invariants of the group G(#, f), using Lie
algebraic methods [13,20].

We shall realize the coadjoint representation of L(n,f) in a space
of differentiable functions of 2n 4+ 1 4+ f variables which we denote
{81,...,sf,p1,...pn,bl,. .,b,,h}. The algebra L(n,f) of theorem 1 will be
realized by differential operators, the form of which can be read off from the com-
mutation relations (2.5), (2.14) and (2.15). Namely, we have

H =-2a,hd, (3.1a)
P, = hd,, — (Af,p, + C%b,)8,, — a,p,8,,
B; = —hd, - (Dfp, — A%b,)9,, - a,b;8, (3.15)
Sy =2a,h8; + (Afp, + Cib, + a,p,)8, +(Dfp, — A%b, + a,b,)0,

+ rophd,, (3.1¢c)

r&,@:ﬂ for a; = 1.
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The matrices A, C = CT and D = DT are the same as in the commutation
relations (2.14), i.e. in (2.8).

The invariants of G(n, f) will be obtained as functionally independent solutions
of the system of first-order linear partial differential equations
HF =0 PF=0 B, F=0 S F=0 F=F(s,,p;.b;,h).

(3.1d)

3.2. The Casimir invariants of the L(n, f) algebras
Let us treat the cases e; = 1 and a, = 0 separately.
Theorem 2. The indecomposable solvable Lie algebra L{n, f) with commutation
relations (2.5), (2.14), (2.15) and a; = 1 (and hence r,; = 0) has precisely (f —1)
generalized Casimir invariants. They can be written in the form
I,_1=[2HS, + Aj;(B;P, + F;B;)+ C{;B;B; - D,‘-"J-P,-F:,n]H‘1

a=2,...,f. (3.2)
Proof. Applying H for a; = 1 to the function F(s,,p;,b,, ) we find that F is
independent of s;. Applying the basis operators of H(n), namely F; and B, of (3.1)

successively to F and using the method of characteristics, we find that F' can depend
onlyon Z; = h and Z_, 2 € a £ f with

Z, = 2hs, + 2A%b;p; + Cfb;b; — DSp;p; - (3.3)

it 1 Bt S

Let us now apply the remaining operators Sz t0 F(h,Z;,...Z;). We have

SpZ, = (A*AP — AP A® 4 C*DF — CPD®) . b;p, + (DP A* — D*AP) ;i pipy

+ (A%CP — APC®),,b;b, 20,8 (3.4)

The commutativity conditions (2.17) imply that the first term in (3.4) vanishes.
The second and third term also vanish, since the symmetric parts of the matrices
DR A~ — DAP and A*CP — ABC™ are zero as a result of the same commutativity
relations. The antisymmetric parts, when contracted with the symmetric tensor p;p;
(or b,b, respectively), also vanish. Hence we have S;Z, = 0for 8 2 2, & 2 2.
Finally, we apply S; and obtain

8\F(h,Z,) = UhFy + Z,Fy + ...+ Z,F; ) = 0. (3.5)

From (3.5) we conclude that F' is an arbitrary function of the invariants (3.2) and
this proves theorem 2.
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Theorem 3. The indecomposable solvable Lie algebra L(n, f) with commutation
relations (2.5), (2.14), (2.15) and a; = 0 has N Casimir invariants

!
L=H =Y a,2, 2<p<N (3.6)

a=1
where

N=f+4+1l-r r=r1ank R
R={r,z} Tag = —Tgq 1€a,B8<f 3.7

Z,=2HS,+ > A%L(B,P,+ P,B;)+ Y C%B;B;
iJj=1 4hi=1

o
~ Y DEPP; 1gag /. (3.8)

544
Hi=1

The constants a,,, are determined from the condition that the column vectors a,
span the nullspace of the matrix R:

Ra,=0 2<p<N. (3.9)

Proof. From the form of the operators (3.1) with a; = 0 we see directly that h is
an invariant. The equations P, B = B, F =0 imply F = F(h, Z;,... Z;) with Z,
as in (3.3), and 1 < o £ f. Following the same reasoning as in the proof of theorem
2 we obtain

ar

452, =0. (3.10)

S, F =2h%r

It follows that the elementary solutions of (3.10) are linear combinations of Z; with
constant coefficients, as in (3.6). We then have

= p2 —
S, 1, =hrage,,=0
i.e. we obtain (3.9} and this completes the proof of theorem 3.

3.3. Examples

To illustrate theorem 2, let us consider the eight-dimensional Lie algebra L(2,3),
characterized by the matrices of (2.24). Applying the theorem, or caiculating the
invariants directly, we obtain

_2HS,+ P,B,+ B, P,

_ 2HS; + P,B, + B, P,
+ = :

I i

I, (3.11)
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To illustrate theorem 3, let us consider the case of the algebras L{n,3) with n
arbitrary. The matrix ® in this case is

0 iz T3
R - - 1"12 0 1"23 (3.12}
—ry; —r 0

and its rank is either r =0or r = 2.
For r = 0 we have rj, = ry; = r3; = 0 and we obtain 4 invariants

{h, Zy, Zy, Zy} (3.13a)

with Z; as in (3.8).
In all other cases we have r» = 2 and the two invariants are

Il =H Iz = 7'2321 + ?"3122 + lezs. (3.13b)

As a further illustration of theorem 3, consider the Lie algebras L(n,4). The
matrix B € F*** can have rank 0, 2 or 4. The invariants are respectively

r=0 {H, Z1,ZZ,23, Z4} (3.140)
™= 2 {H, 1‘2321 + T‘MZZ '+' lezs-, T'24Z-l + 7'4122 + 7'1224} (3-1@)
r=4  {H}. (3.14¢)

4. Conclusions

Theorem 1 reduces the problem of finding all indecomposable solvable Lie algebras
L(n, f) with H(n) as their nilradical, to the problem of classifying all Abelian
subalgebras of sp(2n, F), contairing no nilpotent elements. The classification
group is Sp(2N, F"), figuring in physical applications as the group of canonical
transformations leaving the Heisenberg relation invariant [22-25]

Theorems 2 and 3 provide all the invariants of the coadjoint action of the
corresponding groups G(n, f}, or in more physical terms, the Casimir operators
and the generalized Casimir operators.

The resulis of this article should be of use e.g. in constructing the unitary
representations of the solvable Lie algebras L(n, f) and Lie groups G(n, f), in
particular in the calculation of the characters of these representations.
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Table Al. The Lie algebras L(2,1).
Name X a=1 a=10
C: el < |l
bo o o0 S
Fy(1,5,¢) 0c 0 0 "F‘;‘ila;f(__f’]j’g(“)“ Cb=1,0€c <L
F3(0,1,¢) g g —Ob _oc arg(c) < arg(h) »b=10gcg1
RO0gcgd
0010
oo o1
(1) 0000 N.A.
0000
b0 0 O
Fy(1,8) 00 0 ! ¢ 0garg(d) g ¢ b=1
Fs(0,1) 00 -5 0 ®0gH R b=1
00 0 O
51 0 0
Fy(1,8) 6 b 0 0 C:ogarg(B) < w G b=1
F2(0,1) 00 -b 0 ®: 0 b R ob=1
0 ¢ -1 -b/
01 0 0Y
00 0 -1
Fa(1) 50 0 o N.A.
00 -1 0/
5 0 0 0
Ro(1,b, ¢) 00 0 ¢ 0<h, c#0 cml0<s
R1p(0,5,1) 0 0 =b 0 B0 >0 rUE
0 —e 0 © -5
/00 10
Ru(1,8) 0 ¢ 0 b _
Rp(0,1) 00 00 b#0 b=t
\0 -5 0 O
0 0 50
Rys(l,b,c) 0 0 0 ¢ -bgegd b=
R(0,1,¢) -5 0 00 c# 0 0< el
\0 —c 00
b ¢ 0 O
Ris(1,b,¢) -¢c b 0 0 0<e¢ c=1
Ry6(0,5,1) 0 0 -b ¢ 0gh b2 0
0 0 -¢ -b
0 5 1 0
Ri7(1,8) -5 0 0 1 -
Ri(0, 1) 0 0 0 b 0<b b=1
0 0 -5 0
001 0
000 -1
Ry(1) 000 0 N.A.
000 0
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Appendix. Extensions of H (2) by one and two elements

As an illustration of theorem 1, we shall give a list of al] algebras L(2,1) and L(2,2).
The algebras L(2,3) were presented in section 2.

Let us first consider the case L(2,1). We characterize the algebra by the constant
e = 1 or 0 and by the matrix X ¢ sp(4, F) figuring in theorem 1. For each algebra
we introduce a name Fi{e,b,c) or R,(e,b,c). The letter F indicates that the
algebra exists both for F = C and F = ®; the algebras R exist over R only (ie.
over C they are equivaient to the algebras F'). The subscript simply enumerates the
algebras. The label a in the brackets takes values @ = 1 or a = 0. The other labels
indicate parameters in the matrix X. If there are less than two parameters we drop
corresponding labels. In table Al, we give a list of all inequivalent algebras L(2,1)
over ¥ and C. In the last two columns we give the range of parameters b, c separately
fore =1and ¢ =0 and for F = C and ®. The letters N.A. in column 4 indicate
that the aigebra does not exist for e = 0.

The statement is: any Lie algebra L(2,1) is equivalent to precisely one listed in
table Al.

We now turn to the algebras L(2,2) characterized by two constants, a, and
r = ry,, and two commuting matrices X, X, € sp(4, F).

Any such algebra is equivalent to precisely one in table A2. The first 8 algebras
correspond to a; = @, = 0 and » = 0 or 1, as indicated in columns 1 and 2. The
remaining ones correspond to a; =1, ¢, =0, r =0.

The notation F;(b,c) indicates that the algebras exist and are mutually
inequivalent over both F = € and F = R®; the notation R,(b, ¢) indicates algebras
that differ from those denoted F; only over the ficld of real numbers ®. The range
of parameters over C and R is given in the iast column of table AZ2.

Table A2, The Lie algebras L(2,2).

ay r Name X1 X Range of parameters

10 0 @ ac 00 0

0 1 F co0o 0 0 010 0

0 B 0 -120 000 0
60 0 O 000 -1
10 0 0 ¢ 1 0 0
0 1 Rg 01 0 0 -1 0 0 O
0 Ry 006 -1 0 0 0 0 1
00 0 -1 ¢ & -10

10 0 0\ o0 0 00

0 1 Ry o0 0o 0 0 0 01
Ry 00 =10 0 0 00

00 ¢ of o -1 00

0 0 1 0Y c 0 0¢0

0 1 Rp ¢ 000 ¢ 0 01
Ry, -1 000 0 0 00

0 6 0 0 0 -1 00
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Table A2, {continued)

Range of parameters

Xy
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Table A2. (continued)

Range of parameters
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Table A2. {continued)
ay r Name X1 Xz Range of parameters
O o0 b0 0 1 0 0\
0 0 03 -1 0 0 0
10 Rs®) 5 0 00 00 0 1 b#0
0 -b 00 0 0 -1 0/
co0i1¢ 0 1 0 0y
0001 -1 0 0 0
10 Ry 0000 e 0 0 1
6 000 0 0 -1 0/
0o b 0 0O G 1 1 0Y)
-b 0 0 0 -1 0 0 1
10 Ru(b) 0 0 0 b 0 0 0 1 beR
0 0 -b 0 0 ¢ -1 ¢
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